Практическое и подробное введение в машинное обучение. Простые и понятные объяснения и отсутствие необходимости опыта программирования делают эту книгу прекрасной альтернативой академическому учебнику. Здесь представлен...Подробнее
Практическое и подробное введение в машинное обучение. Простые и понятные объяснения и отсутствие необходимости опыта программирования делают эту книгу прекрасной альтернативой академическому учебнику. Здесь представлены основные алгоритмы машинного обучения (ML), которые сопровождаются наглядными примерами и практическими работами. Также вы узнаете про перекрестную проверку, ансамблевое моделирование, поиск по сетке для настройки моделей, проектирование функций, горячее кодирование и многое другое. Для разработки интеллектуальных машин в первую очередь надо понять классическую статистику, так как алгоритмы на ее основе — это сердце машинного обучения. Написание кода — еще одна неотъемлемая часть ML, которая предусматривает управление данными. Однако материал этого руководства можно освоить даже без навыков программирования. Возможно, с чтения этой книги начнется ваш путь к получению работы в области машинного обучения, а может быть, она просто удовлетворит ваше любопытство. Внутри руководства: • Загрузка бесплатных наборов данных. • Методы очистки данных, включая горячее кодирование, группирование и обработку недостающих данных. • Подготовка данных для анализа. • Линейный регрессионный анализ. • Кластеризация, включая кластеризацию k-средних. • Основы работы нейронных сетей. • Смещение/дисперсия для улучшения модели машинного обучения. • Деревья решений для декодирования классификации. • Ваша первая модель машинного обучения с помощью Python. Об авторе ОЛИВЕР ТЕОБАЛЬД — технический писатель, специализирующийся на темах искусственного интеллекта, финансовых технологий и облачных вычислений. Автор книг Python for Absolute Beginners, Machine Learning with Python for Beginners, Data Analytics for Absolute Beginners и др.