.Практическое изучение RL на Python поможет освоить не только базовые, но и передовые алгоритмы глубокого обучения с подкреплением.
.Вы начнете с основных принципов обучения с подкреплением, OpenAI Gym и Tensor
Flow, познакомьтесь с марковскими цепями, методом Монте-Карло и динамическим программированием, так что "страшные" аббревиатуры DQN, DRQN, A3C, PPO и TRPO вскоре перестанут вас пугать. Вы узнаете об агентах, которые учатся на человеческих предпочтениях, DQfD, HER и многих других последних достижениях RL.
.Прочитав книгу, вы приобретете знания и опыт, необходимые для реализации обучения с подкреплением и глубокого обучения с подкреплением в реальных проектах, и войдете в мир искусственного интеллекта.
.