Задача поиска полного набора трансцендентных первых интегралов систем с диссипацией также является достаточно актуальной, и ей было ранее посвящено множество работ. Благодаря наличию в таких системах нетривиальных групп симметрий показано, что рассматриваемые системы обладают переменной диссипацией, означающей, что в разных областях фазового пространства в системе может присутствовать как подкачка энергии, так и ее рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике закрепленного твердого тела. В результате обнаружен ряд случаев полной интегрируемости уравнений движения в трансцендентных функциях и выражающихся через конечную комбинацию элементарных функций. Получены некоторые обобщения на условия интегрируемости более общих классов неконсервативных динамических систем (динамика четырехмерного и многомерного твердого тела).