Flow и Keras, чтобы с легкостью создавать впечатляющие генеративные модели глубокого обучения, включая вариационные автокодировщики (VAE), генеративно-состязательные сети (GAN), трансформеры, нормализующие потоки, модели на основе энергии и диффузионные модели удаления шума. Дэвид Фостер, начинает с основ глубокого обучения и постепенно переходит к передовым архитектурам. Благодаря его советам и подсказкам вы узнаете, как повысить эффективность обучения и творческие возможности ваших моделей. Книга была полностью обновлена и переработана, чтобы соответствовать текущему развитию генеративного обучения.