В учебном пособии рассмотрены вопросы теории и истории действительных чисел. Подробно анализируются названия числительных в различных языках, предложена схема анализа систем наименований числительных, более предпочтитель...Подробнее
В учебном пособии рассмотрены вопросы теории и истории действительных чисел. Подробно анализируются названия числительных в различных языках, предложена схема анализа систем наименований числительных, более предпочтительная по сравнению с существующими. Приведены примеры систем обозначений чисел, начиная с древнейших и заканчивая позиционными с различными основаниями. Представлены разные формы выполнения арифметических операций как в позиционных, так и непозиционных системах обозначений чисел. Рассмотрены примеры применения позиционных систем к компьютерным вычислениям, релейно-контактным схемам, решению занимательных задач. Подробно анализируются вопросы делимости целых чисел. В рамках строгого подхода введения действительных чисел рассмотрены последовательно понятия полугруппы, группы, полукольца, кольца, полуполя, тела, поля, упорядоченного множества, полного упорядоченного множества, упорядоченного поля, полного упорядоченного поля. Доказана единственность последней структуры. Рассмотрены первые понятия аксиоматических теорий. Учебное пособие предназначено студентам вузов, но может представлять интерес для учителей математики.